

Taylor and Maclaurin Series

1 Definition

The **Taylor Series** for a function $f(x)$ that is infinitely differentiable at a point a is

$$f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots \quad (1)$$

which can be written as

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!}(x - a)^n \quad (2)$$

The **Maclaurin Series** is a Taylor Series where $a = 0$.

2 Maclaurin Series of Common Functions

All of the following equations are valid for complex arguments x .

2.1 Exponential Function

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (3)$$

2.2 Natural Logarithm

$$\ln(1 - x) = - \sum_{n=1}^{\infty} \frac{x^n}{n} \quad |x| < 1 \quad (4)$$

$$\ln(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad |x| < 1 \quad (5)$$

2.3 Trigonometric Functions

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad (6)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \quad (7)$$

2.4 Geometric Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad |x| < 1 \quad (8)$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} \quad |x| < 1 \quad (9)$$

$$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n \quad |x| < 1 \quad (10)$$